High-throughput isolation of Saccharomyces cerevisiae RNA

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-throughput isolation of Saccharomyces cerevisiae RNA.

The yeast Saccharomyces cerevisiae has long been an important model organism for biological investigation (1). More recently, high-throughput approaches using deletion libraries and fusion protein libraries have provided powerful techniques with which to study the entire yeast genome and proteome (2–6). However, the methods typically used for preparing high-quality RNA samples from yeast are im...

متن کامل

isolation of high ethanol resistant strains of saccharomyces cerevisiae

several strains of saccharomyces cerevisiae were isolated from different sources. these strains were under taken for ethanol tolerance analysis and growth under stress condition. exponential phase to various concentrations of ethanol (2–26% v/v) for 1 h was used for isolation of resistant strains. viable cells were isolated and purified by inoculation of diluted samples on yeast extract peptone...

متن کامل

Isolation of indigenous Glutathione producing Saccharomyces cerevisiae strains

Background: Glutathione (GSH) is a non-protein thiol compound, which plays an important role in the response to oxidative stress and nutritional stress. The aim of this study was to isolate indigenous S. cerevisiae strains capable of effectively produce GSH. Methods: One hundred-twenty sweet frui...

متن کامل

High-throughput transformation of Saccharomyces cerevisiae using liquid handling robots

Saccharomyces cerevisiae (budding yeast) is a powerful eukaryotic model organism ideally suited to high-throughput genetic analyses, which time and again has yielded insights that further our understanding of cell biology processes conserved in humans. Lithium Acetate (LiAc) transformation of yeast with DNA for the purposes of exogenous protein expression (e.g., plasmids) or genome mutation (e....

متن کامل

Eliminating gene conversion improves high-throughput genetics in Saccharomyces cerevisiae.

Synthetic genetic analysis was improved by eliminating leaky expression of the HIS3 reporter and gene conversion between the HIS3 reporter and his3Delta1. Leaky expression was eliminated using 3-aminotriazole and gene conversion was eliminated by using the Schizosaccharomyces pombe his5+ gene, resulting in a 5- to 10-fold improvement in the efficiency of SGA.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BioTechniques

سال: 2005

ISSN: 0736-6205,1940-9818

DOI: 10.2144/05386bm04